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This paper presents numerical evidence that in quantum systems with chaotic
classical dynamics, the number of scattering resonances near an energy E scales like
h-−(D(KE )+1)/2 as h- → 0. Here, KE denotes the subset of the energy surface {H = E}
which stays bounded for all time under the flow generated by the classical
Hamiltonian H and D(KE ) denotes its fractal dimension. Since the number of bound
states in a quantum system with n degrees of freedom scales like h-−n , this suggests that
the quantity (D(KE ) + 1)/2 represents the effective number of degrees of freedom
in chaotic scattering problems. The calculations were performed using a recursive
refinement technique for estimating the dimension of fractal repellors in classical
Hamiltonian scattering, in conjunction with tools from modern quantum chemistry
and numerical linear algebra. c© 2002 Elsevier Science (USA)

Key Words: scattering resonances; semiclassical asymptotics; chaotic trapping;
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1. INTRODUCTION

Quantum mechanics identifies the energies of stationary states in an isolated physical
system with the eigenvalues of its Hamiltonian operator. Because of this, eigenvalues play a
central role in the study of bound states, such as those describing the electronic structures of
atoms and molecules [6]. When the corresponding classical system allows escape to infinity,
resonances replace eigenvalues as fundamental quantities: The presence of a resonance at
λ = E − iγ , with E real and γ > 0, gives rise to a dissipative metastable state with energy E
and decay rate γ [38]. Such states are essential in scattering theory, as well as in models of
dissipative phenomena such as radiative damping. This paper is concerned with resonances
in the scattering setting.
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An important property of energy eigenvalues is that one can count them using only the
classical Hamiltonian function H(x, p) = 1

2‖p‖2 + V (x) and Planck’s constant h- : For fixed
energies E0 < E1, the number Neig(E0, E1, h- ) of eigenvalues in [E0, E1] satisfies

Neig(E0, E1, h-) ≈ vol({E0 ≤ H ≤ E1})
(2πh-)n

, (1)

where n denotes the number of degrees of freedom and vol(·) phase space volume. This
result, known as the Weyl law [8, 17], expresses the density of quantum states using the
classical Hamiltonian function. No direct generalization to resonances is currently known.

In this paper, numerical evidence for a Weyl-like power law is presented for resonances in
a two-dimensional model with three symmetrically placed gaussian potentials. A conjecture,
based on the work of Sjöstrand [28] and Zworski [36], states that the number of resonances
λ = E − iγ with E0 < E < E1 and 0 < γ < h- asymptotically lies between C1h-−(D(KE1 )+1)/2

and C0h-−(D(KE0 )+1)/2 as h- → 0, where

D(·) = dimension (see below),

KE = K ∩ {H = E},
(2)

K = {(x, p) : supt‖�t (x, p)‖ < ∞},
�t = flow generated by H .

If D(KE ) depends continuously on E and |E1 − E0| is sufficiently small, then D(KE1) ≈
D(KE0) and the number of resonances in such a region is comparable to h-−(D(KE )+1)/2 for
any E ∈ [E0, E1]. As the conjecture links quantum and classical dynamics, its numerical
verification requires that one calculate both resonances and trapped set dimensions.

The sets K and KE , called trapped sets, consist of initial conditions which generate
trajectories that stay bounded forever. In systems where {H ≤ E} is bounded for all E , the
conjecture reduces to the Weyl asymptotic h-−n . Note that the conjecture implies that

effective number of degrees of freedom for metastable states = D(KE ) + 1

2
(3)

for both quantum and classical chaotic scattering. In this paper, the term “chaotic” always
means hyperbolic; see Sjöstrand [28] or Gaspard [13] for definitions.

The notion of dimension requires some comment: The “triple gaussian” model considered
here has very few trapped trajectories, and K and KE (for any energy E) have vanishing
Lebesgue measures. Thus, D(K ) is strictly less than 2n = 4 and D(KE ) < 2n − 1 = 3. In
fact, the sets K and KE are fractal, as are trapped sets in many other chaotic scattering
problems. This leads to the question of which dimension to use—a difficult question which
requires further study.

This paper is organized as follows: First, the model system is defined. This is followed by
mathematical background information and a heuristic argument for the conjecture. Then,
numerical methods for computing resonances and fractal dimensions are developed, and
numerical results are presented and compared with known theoretical predictions.

2. TRIPLE GAUSSIAN MODEL

The model system has n = 2 degrees of freedom; its phase space is R4, whose points are
denoted by (x, y, px , py).
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First, it is convenient to define

Gσ
x0

(x) = exp

(
− (x − x0)

2

2σ 2

)
. (4)

Similarly, put

Gσ
(x0,y0)

(x, y) = (Gσ
x0

⊗ Gσ
y0

)
(x, y) = Gσ

x0
(x) · Gσ

y0
(y) (5)

in two dimensions.
Now, define H by

H(x, y, px , py) = p2
x + p2

y

2
+ V3(x, y), (6)

where the potential Vm is given by

Vm =
m∑

k=1

Gσ
c(k,m),

(7)

c(k, m) =
(

R cos

(
2πk

m

)
, R sin

(
2πk

m

))
.

That is, it consists of m gaussian “bumps” placed at the vertices of a regular m-gon centered
at the origin, at a distance R > 0. This paper focuses on the case m = 3 because it is the
simplest case that exhibits nontrivial dynamics in two dimensions. However, the case m = 2
is also relevant because it is well understood: See Miller [22] for early heuristic results and
Gérard and Sjöstrand [14] for a rigorous treatment. Thus, double gaussian scattering serves
as a useful test case for the techniques described here.

The quantized Hamiltonian Ĥ is similarly defined:

Ĥ = − h-2

2
� + V3. (8)

See Fig. 1.

FIG. 1. The triple gaussian potential. Here, R = 1.4 and σ = 1/3.
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3. BACKGROUND

The section provides a general discussion of resonances and motivates the conjecture in
the context of the triple gaussian model. However, most of the definitions and arguments
here carry over to more general systems with n degrees of freedom, and the notation has
been chosen accordingly. The reader should keep in mind that n = 2 for the triple gaussian
model.

There exists an extensive literature on resonances and semiclassical asymptotics in other
settings. For example, see [10–12, 35] for detailed studies of the classical and quantum
mechanics of hard disc scattering.

3.1. Resonances

Resonances can be defined mathematically as follows: Set R(z) = (Ĥ − z I )−1 for real z,
where I is the identity operator. This one-parameter family of operators R(z) is the resolvent
and is meromorphic with suitable modifications of its domain and range. The poles of its
continuation into the complex plane are, by definition, the resonances of Ĥ [38].

Less abstractly, resonances are generalized eigenvalues of Ĥ . Thus, we should solve the
time-independent Schrödinger equation

Ĥψ = λψ (9)

to obtain the resonance λ and its generalized eigenfunction ψ . In bound state computa-
tions, one approximates ψ as a finite linear combination of basis functions and solves a
finite-dimensional version of the equation above. For similar calculations to be carried
out for resonances, it is necessary that ψ lie in a function space which facilitates such
approximations, for example L2.

Let ψ and λ solve (9). Then e−(i/h- )λt · ψ solves the time-dependent Schrödinger equation

ih-
∂ψ

∂t
= Ĥψ. (10)

Since metastable states decay in time, Im(λ) must be negative. Now suppose, for simplicity,
that n = 1 (the analysis in higher dimensions requires more care, though the result is the
same): A plane wave with energy E coming in from −∞ produces a transmitted wave
ψ(x) ≈ Ce(i/h- )

√
2Ex for large positive x . Substituting λ = E − iγ for E yields e(i/h- )

√
2λx ,

which grows exponentially as x → +∞ because Im(
√

E − iγ ) < 0. Finite rank approxi-
mations of Ĥ cannot capture such generalized eigenfunctions. However, if we make the
formal substitution x �→ xeiα , then the wave function becomes exp( i

h̄

√
2λ · eiαx). Choosing

α > 1
2 tan−1(γ /E) forces ψ to decay exponentially.

This procedure, called complex scaling, transforms the Hamiltonian operator Ĥ into the
scaled operator Ĥα . It also maps metastable states ψ with decay rate γ < E tan (2α) to
genuine L2 eigenfunctions ψα of Ĥα . The corresponding resonance λ becomes a genuine
eigenvalue: Ĥαψα = λψα . Furthermore, resonances of Ĥ will be invariant under small per-
turbations in α, whereas other eigenvalues of Ĥα will not. The condition α > 1

2 tan−1(γ /E)

implies that, for small γ and fixed E , the method will capture a resonance λ = E − iγ if
and only if γ < 2Eα + O(α2). We can perform complex scaling in higher dimensions by
substituting r �→ reiα in polar coordinates.
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FIG. 2. Illustration of complex scaling: The box at the top of the figure is the region of interest; only resonances
in that box are counted. Under complex scaling, the continuous spectrum (corresponding to “unbound states”)
of Ĥ is rotated into the lower half plane. The three diagonal lines indicate where the rotated continuous spectra
for different values of α should be: Although most eigenvalues of Ĥ α actually belong to the scaled continuous
spectrum, they do not appear here because only eigenvalues near the region of interest are computed. (A few do
appear near the diagonal lines.) Filled circles mark resonances, while stars, empty circles, and dots mark other
eigenvalues of Ĥ α .

In algorithmic terms, this means we can compute eigenvalues of Ĥα for a few different
values of α and look for invariant values, as demonstrated in Fig. 2. In addition to its
accuracy and flexibility, this is one of the advantages of complex scaling: The invariance
of resonances under perturbations in α provides an easy way to check the accuracy of
calculations, mitigating some of the uncertainties inherent in computational work. Note
that the scaled operator Ĥα is no longer self-adjoint, which results in non-hermitian finite-
rank approximations and complex eigenvalues.

This method, first introduced for theoretical purposes by Aguilar and Combes [1] and
Balslev and Combes [4], was further developed by Simon in [27]. It has since become one of
the main tools for computing resonances in physical chemistry [23, 25, 32, 33]. For recent
mathematical progress, see [19, 28, 29] and references therein. Interested readers are also
referred to [34] and references there for a different approach to resonance computation.

For reference, the scaled triple gaussian operator Ĥα is

Ĥα = −e−2iα · h-2

2
� + V3,α, (11)

where

Vm,α =
m∑

k=1

Gσα

cα(k,m),

(12)
σα = e−iα · σ,

cα(k, m) = e−iαc(k, m).

Note that these expressions only make sense because Gσ
x0

(x) is analytic in x, x0, and σ .
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3.2. Fractal Dimension

As the Minkowski dimension arises naturally in the heuristic argument in the next section,
let us recall its definition: The Minkowski dimension of a set U ⊂ Rm is

D = inf
{

d: lim sup
ε→0

(εd−m · vol(Uε)) < ∞
}

, (13)

where Uε = {y ∈ Rm : dist(y, U ) < ε}. A simple calculation yields

D(U ) = lim
ε→0

log(vol(Uε)/ε
m)

log (1/ε)
(14)

when the limit exists.
In studying fractal sets and measures, one can employ many different definitions of

dimension; the Minkowski dimension is certainly not unique. Furthermore, it has some
unfortunate properties. For example, a countable union of zero-dimensional sets can have
positive Minkowski dimension. For this reason, texts on the theory of dimensions typi-
cally begin with the better-behaved Hausdorff dimension. But the Minkowski dimension is
sometimes easier to manipulate and almost always easier to compute.

For a detailed treatment of different definitions of dimension and their applications in the
study of dynamical systems, see [9, 24].

3.3. Generalizing the Weyl Law

Equation (1) makes no sense for scattering resonances because the volume on the right-
hand side is infinite for most choices of E0 and E1. This seems to mean that there is no
generalization of the Weyl law in the setting of scattering theory. However, the following
heuristic argument suggests otherwise:

As mentioned before, a metastable state corresponding to a resonance λ = E − iγ has
a time-dependent factor of the form e−(i/h- )λt = e−(i/h- )Et · e−(γ /h- )t . A wave packet whose
dynamics is dominated by λ (and other resonances near it) would therefore exhibit temporal
oscillations of frequency O(E/h- ) and lifetime O(h-/γ ). Heuristically, then, the number of
times the particle bounces in the trapping region formed by the gaussian bumps should be
comparable to E

h- · h-

γ
= E

γ
.

In the semiclassical limit, the motion of the wave packet should be well-approximated
by the underlying classical dynamics. Let T (x, y, px , py) denote the time to escape the
trapping region from the initial phase point (x, y, px , py). The diameter of the trapping
region is O(R), and typical velocities in the energy surface {H = E} are O(E1/2) (mass
is set to 1), so the number of times a classical particle bounces before escaping should be
O(T

√
E/R). This suggests that, in the limit h- → 0, T

√
E/R ∼ E/γ and consequently

T ∼ R
√

E

γ
. (15)

Fix γ0 > 0, and consider

Nres = #{E − iγ : E0 ≤ E ≤ E1, γ ≤ γ0} (16)
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for fixed energies E0 and E1: Equations (15) and (16) imply that T ≥ R
√

E0/γ0, so by
analogy with the Weyl law,

vol
({

E0 ≤ H ≤ E1, T ≥ R
√

E0
γ0

})
(2πh-)n

(17)

follows as an approximation for the number of quantum states with the specified energies
and decay rates.

Now, the function 1/T is nonnegative for all (x, y, px , py) and vanishes on K[E0,E1] =
K ∩ {E0 ≤ H ≤ E1}. Assuming that 1/T is sufficiently regular,2 this suggests

1/T (x, y, px , py) ∼ dK[E0 ,E1](x, y, px , py)
2, (18)

where dK[E0 ,E1] denotes distance to K[E0,E1]. It follows that Nres should scale like

vol
({

E0 ≤ H ≤ E1, dK[E0 ,E1] ≤ γ
1/2
0

})
h̄n . (19)

For small γ0, this becomes

C(R, E0, E1) · h-−n · γ
2n−D(K[E0 ,E1])

2
0 (20)

for some constant C , by (13). Setting γ0 = h- and assuming that D(KE ) decreases monoton-
ically with increasing E (as is the case in Fig. 22) yields

C1h-− D(K E1
)+1

2 ≤ Nres ≤ C0h-− D(K E0
)+1

2 . (21)

If |E1 − E0| is sufficiently small, then D(K[E0,E1]) ≈ D(KE ) + 1 for E ∈ [E0, E1], and

Nres ∼ h-− D(K E )+1
2 . (22)

In [28], Sjöstrand proved the following rigorous upper bound: For γ0 > 0 satisfying Ch- <

γ0 < 1/C ,

Nres = O

(
Cδh-−nγ

2n−D(K[E0 ,E1])+δ

2
0

)
(23)

holds for all δ > 0. When the trapped set is of pure dimension, that is when the infimum
in Eq. (13) is achieved, one can take δ = 0. Setting γ0 = h- gives an upper bound of the
form (22).

In his proof, Sjöstrand used the semiclassical argument above with escape functions and
the Weyl inequality for singular values. Zworski continued this work in [36], where he proved

2 In fact, this is numerically self-consistent: Assume that 1/T vanishes to order ν (with ν not necessarily equal
to 2) on K , and assume the conjecture. Then the number of resonances would scale like h- (2n−D(K ))/ν , from which one
can solve for ν. With the numerical data obtained here, this indeed turns out to be 2 (but with some fluctuations).
If 1/T does not vanish quadratically everywhere on K , variations in its regularity may affect the correspondence
between classical trapping and the distribution of resonances.
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a similar result for scattering on convex co-compact hyperbolic surfaces with no cusps. His
work was motivated by the availability of a large class of examples with hyperbolic flows,
easily computable dimensions, and the hope that the Selberg trace formula could help obtain
lower bounds. But these hopes remain unfulfilled so far [15], and that partly motivates this
work.

4. COMPUTING RESONANCES

Complex scaling reduces the problem of calculating resonances to one of computing
eigenvalues. What remains is to choose scaling angles α, approximate Ĥα by rank N
matrices Ĥ N ,α for each α, and compute their spectra numerically. For comparison, see [23,
25, 32, 33] for applications of complex scaling to problems in physical chemistry.

4.1. Choice of Scaling Angle

To count resonances in the box [E0, E1] − i[0, h- ], it is necessary to choose α ≥ tan−1( h-

E0
)

so that the corresponding generalized eigenfunction can be captured by finite rank approx-
imations (see Fig. 2 and Section 3.1). The resonance calculation described here uses the
smallest acceptable value,

α = tan−1

(
h-

E0

)
, (24)

so that α = O(h-) as h- → 0. In addition to satisfying α ≥ tan−1( h-

E0
), this choice keeps the

scaled operator Ĥα nearly normal. Near-normality, in turn, helps avoid possible pseudospec-
tral effects, which can interfere with eigenvalue calculations [31, 37]:

Let A be an operator on a Hilbert space, and let R(z) be the resolvent (A − z I )−1. When
A is normal, that is, when A commutes with its adjoint A∗, the spectral theorem applies
and the inequality

‖R(z)‖ = ‖(A − z I )−1‖ ≤ dist(z, σ (A))−1 (25)

holds (σ(A) denotes the spectrum of A). When A is nonnormal, as is the case for Ĥα , no
such inequality holds and ‖R(z)‖ can become very large for z far from σ(A). Trefethen
demonstrates in [31] that numerical algorithms often compute false eigenvalues in such
regions, where the resolvent becomes large far from the true spectrum.

More precisely, let us define the ε-pseudospectrum as

�ε(A) = {z : ‖R(z)‖ ≥ 1/ε}. (26)

When A is a matrix, it is easy to show that

�ε(A) = {z : ∃A′ such that z ∈ σ(A + A′), ‖A′‖ ≤ ε}. (27)

That is, the ε-pseudospectrum of A consists of those complex numbers z which are eigen-
values of an ε-perturbation of A. The notion of pseudospectra can be extended to general
linear operators.
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In [37], Zworski explains pseudospectral phenomenon using semiclassical asymptotics.
Roughly speaking, there exist ε = ε(h-) such that the closure of the range of the scaled
Hamiltonian function Hα ,

Hα(x, y, px , py) = e−2iα · p2
x + p2

y

2
+ V3,α, (28)

is contained in the ε(h-)-pseudospectrum of the scaled operator Ĥα , with ε(h-) = O(h- N ) as
h- → 0 for all N > 0. In the present setting, a simple calculation shows that for small α,
range (Hα) contains the box [E0, E1] − i[0, h- ] for E0 = 0.4, E1 = 0.6. Thus, it is desirable to
choose the smallest acceptable α to make Ĥα as near-normal as possible. Also, as illustrated
by Figs. 31–34, the invariance of resonances under perturbations in α helps filter out some
pseudospectral effects.

4.2. Eigenvalue Computation

Suppose that we have constructed Ĥ N ,α . Instead of solving the eigenvalue problem
Ĥ N ,αv = λv directly, it is natural to solve the equivalent eigenvalue problem

(Ĥ N ,α − λ0)
−1v = λ′v. (29)

Efficient implementations of the Arnoldi or Lanczos algorithms (see [20] and references
therein) can solve for the largest few eigenvalues λ′ of (Ĥ N ,α − λ0)

−1 using relatively little
auxiliary storage. But λ = λ0 + 1/λ′, so this method allows one to compute a subset of the
spectrum of Ĥ N ,α near a given λ0.

Such algorithms require a method for applying the matrix (Ĥ N ,α − λ0)
−1 to a given

vector v at each iteration step. In the resonance computation, this is done by solving
(Ĥ N ,α − λ0)w = v for w, using the conjugate gradient method on the normal equations
(see [5]).3 The resonance program, therefore, consists of two nested iterative methods: An
outer Arnoldi loop and an inner iterative linear solver for (Ĥ N ,α − λ0)w = v. This compu-
tation uses ARPACK [20], which provides a flexible and efficient implementation of the
Arnoldi method.

To compute resonances near a given energy E , the program uses λ0 = E + ia, a > 0,
instead of λ0 = E . This helps control the condition number of Ĥ N ,α − λ0 and gives better
error estimates and convergence criteria.4

4.3. Matrix Representations

4.3.1. Choice of Basis

While one can discretize the differential operator Ĥα via finite differences, in practice it
is better to represent the operator using a basis for a subspace of the Hilbert space L2. This

3 That is, instead of solving Aw = v, one solves A∗ Aw = A∗v. This is necessary because Ĥ N ,α is non-hermitian,
and the conjugate gradient method only works for positive definite matrices. This is not the best numerical method
for non-hermitian problems, but it is easy to implement and suffices in this case.

4 Most of the error in solving the matrix equation (Ĥ N ,α − λ0)w = v concentrates on eigenspaces of (Ĥ N ,α −
λ0)

−1 with large eigenvalues. These are precisely the desired eigenvalues, so in principle one can tolerate inaccurate
solutions. However, the calculation requires convergence criteria and error estimates for the linear solver, and using
a > 0, say a = 1, turns out to ensure a relative error of about 10−6 after about 17–20 iterations of the conjugate
gradient solver. A more accurate (and expensive) computation of resonances is not necessary for the purpose of
resonance-counting.
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FIG. 3. A sinc function.

should better represent the properties of wave functions near infinity and obtain smaller
(but denser) matrices.

Common choices of bases in chemical calculations include so-called “phase space
gaussian” [7] and “distributed gaussian” bases [16]. These bases are flexible and are well
adapted to calculations involving gaussian or polynomial potentials. However, they are not
orthogonal with respect to the standard L2 inner product, so one must explicitly orthonor-
malize the basis before computing the eigenvalues of Ĥ N ,α . In addition to the computational
cost, this requires storing the entire matrix and severely limits the size of the problem one can
solve. Instead, this computation uses another well-known class of bases, a discrete-variable
representation (DVR) [21].

Consider, for the moment, the one-dimensional problem of finding a basis for a “good”
subspace of L2(R). Fix a constant �x > 0, and for each integer m, define

φm,�x (x) = �x1/2 · sin
(

π
�x (x − m�x)

)
π(x − m�x)

. (30)

(This is known as a “sinc” function in engineering literature [26]. See Fig. 3.) The Fourier
transform of φm,�x is

φ̂m,�x (ω) =
{

e−im�x · �x1/2, |ω| ≤ π/�x

0, |ω| > π/�x .
(31)

One can easily verify that for fixed �x > 0, the set {φm,�x } forms an orthonormal
basis for the closed subspace of L2 functions whose Fourier transforms are supported
in [−π/�x, π/�x].

To find a basis for the corresponding space of band-limited functions in L2(R2), simply
form the tensor products

φmn(x0, y0) = φm,�x (x)φn,�y(y). (32)

The basis has a natural one-to-one correspondence with points (m�1 + X0, n�2 + Y0) on
a regular lattice of grid points in a box [X0, X1] × [Y0, Y1] covering the spatial region of
interest. (See Fig. 4.)
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FIG. 4. Illustration of resonance program parameters in configuration space: The lower left corner of the grid
is (X0, Y0), while the upper right corner is (X1, Y1). The grid contains Nx × Ny points, and a basis function φmn is
placed at each grid point. Stars mark potential centers, the circles have radius σ = 1/3, and R = 1.4. Parameters
for the classical computation are depicted in Fig. 5.

4.3.2. Tensor Product Structure

In the case of energy eigenvalues, the Weyl law states that Neig = O(h-−2) as h- → 0, since
our system has n = 2 degrees of freedom. Thus, in order to capture a sufficient number of
eigenvalues, the rank N of the matrix approximation must scale like h-−2. In the absence
of more detailed information on the density of resonances, the resonance computation
requires a similar assumption to ensure sufficient numerical resolution. This means that for
moderately small h- , the matrix has N 2 ∼ h-−4 entries, which can rapidly become prohibitive
on most computers available today.

To reduce storage requirements and running time, one can exploit the separability of the
Hamiltonian: Each term in the scaled Hamiltonian Ĥα splits into a tensor product,

∂2

∂x2
= d2

dx2
⊗ Iy, (33)

∂2

∂y2
= Ix ⊗ d2

dy2
, (34)

Gσ
(x0,y0)

= Gσ
x0

⊗ Gσ
y0
, (35)

where Ix and Iy denote identity operators on copies of L2(R). Since the basis {φmn} consists
of tensor products of one-dimensional bases, Ĥ N ,α is also a short sum of tensor products.
Thus, if we let Nx denote the number of grid points in the x direction and let Ny denote
the number of grid points in the y direction, then N = Nx · Ny and Ĥ N ,α is a sum of five
matrices of the form Ax ⊗ Ay , where Ax has size Nx × Nx and Ay has size Ny × Ny .

Such tensor products of matrices can be applied to arbitrary vectors efficiently using
the outer product representation:5 On an Nx × Ny grid, the rank of Ĥ N ,α is N = Nx · Ny .

5 The tensor product of two column vectors v and w can be represented as vwT . We then have (A ⊗ B) × (v ⊗
w) = (Av) · (Bw)T , which extends by linearity to (A ⊗ B)u = Au BT .
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As Nx ≈ Ny ≈ √
N in these calculations, we can store the tensor factors of the matrix

Ĥ N ,α using O(N 2
x + N 2

y ) = O(N ) storage instead of O(N 2). Furthermore, while matrix–
vector multiplications usually require O(N 2) operations, this tensor product representation
requires O(N 3

x + N 3
y ) = O(N 3/2), a moderate improvement.

Note that this basis fails to take advantage of the discrete rotational symmetry of the
triple gaussian Hamiltonian, and the resulting matrix is not sparse, as one can see from the
matrix elements for the Laplacian below. Nevertheless, the tensor decomposition provides
sufficient compression of information to facilitate efficient computation.

4.3.3. Matrix Elements

It is straightforward to calculate matrix elements Kmn = 〈− h- 2

2 φ′′
n,�x , φm,�x 〉 for the

Laplacian on R1:

Kmn =



h- 2π2

�x2 , m = n

(−1)m−n · h- 2

�x2 · (m − n)2 , m �= n.
(36)

There is no closed form expression for the matrix elements of the potential, but it is easy to
perform numerical quadrature with these functions. For example, to compute

Vmn =
∫

G(x)φm(x)φn(x) dx (37)

for G(x) = e−x2/2σ 2
, one computes

Vmn ≈
N∑

k=−N

G(kδ) · δ · φm(kδ) · φn(kδ), (38)

where the stepsize δ should satisfy δ ≤ �x/2. It is easy to show that the error is bounded
by the sum of

2 exp

(
−|σ |2π2

2δ2

)
, (39)

which controls the aliasing error, and

(2π)
1
2 |σ |

�x
exp

(
− (N − 1)2δ2

2|σ |2
)

, (40)

which controls the truncation error.

4.3.4. Other Program Parameters

The grid spacings �x and �y imply a limit on the maximum possible momentum in a
wave packet formed by this basis. In order to obtain a finite-rank operator, it is also necessary
to limit the number of basis functions.

The resonance computation used the following parameters:

1. X0, X1, Y0, and Y1 are chosen to cover the region of the configuration space for which
V3(x, y) ≥ 10−4.
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2. Let Lx = X1 − X0 and L y = Y1 − Y0 denote the dimension of the computational do-
main. The resonance calculation uses N = Nx · Ny basis functions, with Nx = 1.6 · Lx

√
8E

2πh-

and Ny = 1.6 · L y

√
8E

2πh- .
3. This gives

�x = Lx/Nx ,
(41)

�y = L y/Ny,

which limits the maximum momentum in a wave packet to |px | ≤ πh-/�x = 1.6
√

2E and
|py | ≤ πh-/�y = 1.6

√
2E .

5. TRAPPED SET STRUCTURE

5.1. Poincaré Section

Most strategies for computing dimensions involve sampling the ambient space, often on
a regular grid, for points which lie “close” to the fractal object of interest. Because the
phase space for the triple gaussian model is four-dimensional, a direct calculation of the
trapped set can be expensive. The following consideration helps reduce the dimension of
the problem:

Recall that R is the distance from each bump to the origin. Around the kth bump, draw
a circle Ck of radius R0 < R (see Fig. 5). Intuitively, if the radius R0 is sufficiently large,
then most trapped trajectories will intersect the circles infinitely often. The intersections of
these trajectories with the circles should therefore characterize the trapped set, modulo a
small subset. The dimension of this intersection should be 1 less than the dimension of the
trapped set, because the flow simply pushes this image out along one-dimensional curves.

This leads to the following mathematical construction: Fix an energy E , and choose R0

so that the Ck do not intersect. Let Pk denote those points (x, y, px , py) in {H = E} such

FIG. 5. A typical trajectory. Stars mark the potential centers, whose distance to the origin is R = 1.4. The circles
have radius R0 = 1.0, and the disjoint union of their cotangent bundles form the Poincaré section. Trajectories
start on the circle centered at bump 0 (the bumps are, counterclockwise, 0, 1, and 2) with some given angle θ

and angular momentum pθ . This trajectory generates the finite symbolic sequence (∞, 2, 0, 2, 0̇, 1, 2, 0, 2, ∞).
(Symbolic sequences are discussed later in the paper.) The solid curve corresponds to �t (θ, pθ ) for t ≥ 0, while
the dashed curve corresponds to �t (θ, pθ ) for t < 0.
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that (x, y) ∈ Ck , and let P be the union P0 ∪ P1 ∪ P2. With respect to the kth potential, we
can define the angular momentum pθ by

pθ = x̄ · py − ȳ · px , (42)

where x̄ = x − R cos(θk), ȳ = y − R sin(θk), and θk = 2πk
3 . Similarly, the radial momentum

is

pr =
(

E − V3(x, y) − p2
θ

2R2
0

)1/2

. (43)

The subspace Pk can be coordinatized by the pair (θ, pθ ) with respect to the kth potential.
These coordinates are related to ambient phase space coordinates (x, y, px , py) by

x = R cos(θk) + R0 cos(θ + θk),

y = R sin(θk) + R0 sin(θ + θk),

(44)
px = pr cos(θ + θk) − pθ

R0
sin(θ + θk),

py = pr sin(θ + θk) − pθ

R0
cos(θ + θk).

Note that this implicitly embeds P into the energy surface {H = E} and that pr is always
chosen to be positive, so that the vector (px , py) points away from the center of Ck .

Now, take any point (θ, pθ ) in Pk , and form the corresponding point (x, y, px , py) in R4

via Eq. (44). Follow along the trajectory �t (x, y, px , py). If the trajectory does not escape,
it is likely to intersect Ck ′ for some k ′ �= k, and will generically do so at two points. Let
(θ ′, p′

θ ) denote the coordinates (in Pk ′ ) of the outgoing intersection, and set

�̃(θ, pθ , k) = (θ ′, p′
θ , k ′). (45)

If a trajectory escapes from the trapping region, we can symbolically assign ∞ to �̃.
The map �̃ generates stroboscopic recordings of the flow �t on the submanifold P ,

and the corresponding discrete dynamical system has trapped set K̃E = KE ∩ P . As stated
before, pushing K̃ E along the flow �t adds one dimension, so D(K̃E ) = D(KE ∩ P) + 1.
By symmetry, we need only compute the dimension of K̃E = KE ∩ P0. Since P0 is two-
dimensional, D(K̃ E ) is easier to compute than D(KE ).

Note that the trapped set is naturally partitioned into two subsets: The first consists of
trajectories which visit all three bumps, the second of trajectories which bounce between
two bumps. The second set forms a one-dimensional subspace of KE , so the finite stability of
the Minkowski dimension6 implies that the second set does not contribute to the dimension
of the trapped set.

Readers interested in a more detailed discussion of Poincaré sections and their use in
dynamics are referred to [30]. For an application to the similar but simpler setting of hard
disc scattering, see [10, 13]. Also, Knauf has applied some of these ideas in a theoretical in-
vestigation of classical scattering by Coulombic potentials [18]. Some background material
on differentiable manifolds and Hamiltonian mechanics can be found in Arnold [3].

6 That is, D(A ∪ B) = max(D(A), D(B)). For details, see [9].
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FIG. 6. Points in P0 which do not go to ∞ after one iteration of �̃. The horizontal axis is θ and the vertical
axis is pθ .

5.2. Self-Similarity

Much is known about the self-similar structure of the trapped set for hard disc scattering
[10, 13]; less is known about “soft scatterers” such as the triple gaussian system. However,
computational results and analogy with hard disc scattering give strong support to the idea
that K (and hence K̃E ) is self-similar or, more precisely, self-affine; see Figs. 6–12. (In
these images, E = 0.5 and R0 = 1.0.) However, it is also clear that, unlike objects such as
the Cantor set or the Sierpiński gasket, K̃E is not exactly self-similar.

FIG. 7. Points in P0 which do not go to ∞ after one iteration of �̃−1. The horizontal axis is θ and the vertical
axis is pθ .
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FIG. 8. The intersection of the sets in Figs. 6 and 7. These points correspond to symmetric sequences of
length 3 and form the set K̃ (1)

E .

5.3. Symbolic Dynamics

The computation of D(K̃E ) uses symbolic sequences, which requires a brief explanation.
Let (θ, pθ ) denote a point in P0, and consider the trajectory it generates under the flow map
�t , for −∞ < t < ∞. As explained above, for most choices of (θ, pθ ), the trajectory
will cross the circles Ck many times before escaping. (Trapped trajectories will do so
infinitely many times.) The sequence of circles that a given trajectory visits form a symbolic

FIG. 9. The lower-right “island” in Fig. 8, magnified. The white cut-out in the middle is the subset corre-
sponding to symmetric sequences of length 5.
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FIG. 10. The cut-out part of Fig. 9, magnified. Recall that these correspond to symmetric sequences of
length 5; compare with Fig. 8.

sequence

s = (. . . , s−2, s−1, 0̇, s1, s2, . . .), (46)

where 0̇ indicates that the initial point lies in P0. The integer si refers to the circle that the
trajectory intersects at the i th iteration of �̃; such sequences satisfy si ∈ {0, 1, 2, ∞} and
si �= si+1 for all i , with ∞ occurring only at the ends. Sequences satisfying these conditions
are valid.

For example, the trajectory in Fig. 4 generates the valid sequence

(∞, 2, 0, 2, 0̇, 1, 2, 0, 2, ∞). (47)

FIG. 11. The upper-right island in Fig. 8. The white cut-out in the middle is, again, the subset corresponding
to symmetric sequences of length 5.
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FIG. 12. The cut-out part of Fig. 11, magnified. Recall that these correspond to symmetric sequences of length
5. Compare with Figs. 8 and 10.

Clearly, trapped trajectories generate bi-infinite sequences, whereas escaping trajectories
generate finite sequences terminating in the symbol ∞.7

Each island in Figs. 8–11 corresponds uniquely to the set of valid sequences containing a
specific symmetric sequence (s−k, . . . , s−1, 0̇, s1, s2, . . . , sk). For instance, the four islands
in Fig. 8 correspond to the symmetric sequences (1, 0̇, 1), (1, 0̇, 2), (2, 0̇, 2), and (2, 0̇, 1).
This property is very useful from the computational point of view (see below).

5.4. Dimension Estimates

To compute the Minkowski dimension using Eq. (14), we need to determine when a given
point is within ε of K̃E . This is generally impossible. Instead, it is easier to estimate the
information dimension:

Let K̃ (k)
E denote the set of all points in P0 corresponding to symmetric sequences of length

2k + 1 centered at 0. That is, K̃ (k)
E consists of all points in P0 which generate trajectories

that bounce at least k times (both forward and backward in time) before escaping. The sets
K̃ (k)

E decrease monotonically to K̃ E : K̃ (k)
E ⊃ K̃ (k+1)

E and ∩∞
k=1 K̃ (k)

E = K̃ E .
Now let AN be and N × N square grid covering K̃ (1)

E (see Fig. 13); denote its i j th cell
by AN (i, j). Define

pi j (N , k) = vol
(

K̃ (k)
E ∩ AN (i, j)

)
vol
(

K̃ (k)
E

) , (48)

where vol(·) denotes phase area in the subspace P0. Then, the information dimension can

7 In hard disc scattering, the converse holds if R0/R is sufficiently small: To each bi-infinite valid sequence,
there exists a trapped trajectory generating that sequence. This may not hold in the triple gaussian model, and in
any case it is not necessary for the computation.
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FIG. 13. This figure illustrates the recursive step in the dimension estimation algorithm, showing both the
background grid A and an auxiliary grid A′. The grid A remains fixed throughout the computation, but A′ is
constructed for each island of K̃ (k)

E .

be defined by the double limit

lim
N→∞

lim
k→∞

−∑i j pi j (N , k) log(pi j (N , k))

log(N )
(49)

in this context. This is actually the information dimension of a probability measure invariant
under the Poincaré map �̃. The information dimension of a measure is equal to the Hausdorff
dimension of that measure under the condition of exact dimensionality, which in turn bounds
the Hausdorff dimension of the trapped set from above; these may both differ from the
Minkowski dimension of the trapped set [24]. In this paper, the information dimension is
taken as an (uncontrolled) estimate of the dimension of the trapped set.

The double limit in Eq. (49) presents a computational problem: In order to calculate the
information dimension of the measure, the sets K̃ (k)

E must be approximated on a grid much
finer than the N × N grid AN . This can be quite time-consuming. The dimension calculation
therefore uses a simple adaptive algorithm, where a finer grid is generated recursively on
each island of K̃

(kstop)

E , where kstop is chosen sufficiently large to approximate the inner limit.
Here is the algorithm:

1. Set Parameters: First, fix the following:
(i) N : number of grid points per axis on the background grid A

(ii) N ′ : number of grid points per axis on the auxiliary grid
(iii) kstop: recursion depth

2. Initialize Background Grid: Construct the grid A to cover K̃ (1)
E ; A will remain fixed

throughout the computation. Let C be an N × N integer matrix, all of whose entries are
initialized to 0.

3. Prepare for Recursion: Set k = 1, A′ = A, and σ = (0̇) (σ is a symbolic sequence of
length 1).

4. Recursively Refine Grids:
(i) Identify Islands: For each valid sequence of the form σ ′ = (a, σ, b) of length 2k +

3 (a, b ∈ {0, 1, 2}), compute the corresponding island Iσ ′ on A′ by iterating the Poincaré
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map �̃ for each grid point of A′. Keep in mind that the set K̃ (k)
E consists of 4k islands, each

corresponding to a unique symmetric sequence σ of length 2k + 1 (see Fig. 8).
(ii) Magnify and Recurse: If k < kstop, then repeat Step 4 for each island Iσ ′ , with

A′ set to a new N ′ × N ′ grid centered on Iσ ′ (see Fig. 13), k set to k + 2, and σ set to σ ′.
Otherwise, proceed to the next step.

(iii) Count: For each point in each island Iσ (where the length of σ is now 2kstop + 1),
increment the corresponding entry of the matrix C by 1.

5. Estimate Dimension: The matrix C lets us estimate

pi j =
vol
(

K̃
(kstop)

E ∩ Ai j

)
vol
(

K̃
(kstop)

E

)
(50)

≈ Ci j

Ntotal
,

where Ntotal =∑i j Ci j . The quantity

−∑i j pi j log(pi j )

log(N )
(51)

is then an estimate of the information dimension.
Figure 13 illustrates the grids used in this algorithm.

6. NUMERICAL RESULTS

6.1. Resonance Counting

As an illustration of complex scaling, Figs. 14–18 contain resonances for R = 1.4 and
h- ∈ [0.017, 0.025]. Eigenvalues of Ĥ N ,α for different values of α are marked by different
styles of points, and the box has depth h- and width 0.2, with E0 = 0.4 and E1 = 0.6. These
plots may seem somewhat empty because only those eigenvalues of Ĥ N ,α in regions of

FIG. 14. As in Fig. 2, filled circles mark resonances, while stars, empty circles, and dots mark other eigenvalues
of Ĥ α for α ∈ {0.0624, 0.0799, 0.0973}. The parameters are E = 0.5, h̄ = 0.025, and R = 1.4. This calculation
used an 102 × 108 grid, and 90 out of N = 11,016 eigenvalues were computed.
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FIG. 15. This plot is the same as Fig. 14, except that h̄ = 0.022702 and α ∈ {0.0567, 0.0741, 0.0916}. This
calculation uses a 112 × 119 grid and computed 98 out of N = 13,328 eigenvalues.

FIG. 16. This calculation uses h̄ = 0.020616 and α ∈ {0.0515, 0.0689, 0.0864}. It was done on a 123 ×
131 grid, and 107 out of N = 16,113 eigenvalues were computed.

FIG. 17. This calculation uses h̄ = 0.018721 and α ∈ {0.0468, 0.0642, 0.0817}. It was done on a 135 ×
144 grid, and 116 out of N = 19,440 eigenvalues were computed.
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FIG. 18. This calculation uses h̄ = 0.017 and α ∈ {0.0425, 0.0599, 0.0774}. It was done on a 149 × 159 grid,
and 127 out of N = 23,691 eigenvalues were computed.

FIG. 19. This plot shows log(Nres) as a function of −log(h̄), for h̄ varying from 0.017 to 0.025 and R ∈
{1.4, 1.45, 1.5, . . . , 1.7}: The bottom curve corresponds to R = 1.7, while the top curve corresponds to R = 1.4.

FIG. 20. This plot shows log(Nres) as a function of R, for different values of −log(h̄): The top curve corres-
ponds to h̄ = 0.017, while the bottom curve corresponds to h̄ = 0.025. (The values of h̄ form a geometric sequence.)
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FIG. 21. The slopes extracted from Fig. 19, as a function of R. The dotted curve is a least-squares linear fit
of the “noisy” curve.

interest were computed. Notice the cluster of eigenvalues near the bottom edge of the plots.
These are not resonances because they vary under perturbations in α. Instead, they belong
to an approximation of the (scaled) continuous spectrum.

It is more interesting to see log(Nres) as a function of −log(h-) and R. This is shown in
Figs. 19 and 20. Using least-squares regression, we can extract approximate slopes for the
curves in Fig. 19; these are shown in Table II and plotted in Fig. 21.

6.2. Trapped Set Dimension

For comparison, D(KE ) + 1
2 is plotted as a function of R in Fig. 22. The figure contains

curves corresponding to different energies E : The top curve corresponds to E = 0.4, the

FIG. 22. This figure shows D(K E ) + 1
2

as a function of R: The top group of curves have E = 0.4, the middle
E = 0.5, and the bottom E = 0.6. Solid curves marked with circles represent computations where N = 10,000,
N ′ = 100, 2π

3
≤ θ ≤ 4π

3
, and − 1

2
≤ pθ ≤ 1

2
. Dashed curves marked with Xs represent computations where

N = 14,142, whereas dashed curves marked with triangles represent computations where N = 10,000 and N ′ = 71.
The recursion depth k0 in all these figures is 6. The E = 0.6 curve does not appear to have completely converged
but suffices for our purpose here.
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TABLE I

Estimates of D(KE) + 1
2 as a Function of R

R E = 0.4 E = 0.5 E = 0.6

1.4 1.3092 1.2885 1.261
1.45 1.3084 1.2834 1.2558
1.5 1.3037 1.2829 1.2497
1.55 1.3007 1.2773 1.2521
1.6 1.2986 1.2725 1.2511
1.65 1.2912 1.2694 1.2488
1.7 1.2893 1.2636 1.2524

middle curve E = 0.5, and the bottom curve E = 0.6. It also contains curves corresponding
to different program parameters, to test the numerical convergence of dimension estimates.
These curves were computed with θ ∈ [ 2π

3 , 4π
3 ], pθ ∈ [− 1

2 , 1
2 ], and recursion depth k0 = 6

(corresponding to symmetric sequences of length 2 · 6 + 1 = 13); the caption contains the
values of N and N ′ for each curve. For reference, Table I contains the dimension estimates
shown in the graph. It is important to note that, while the dimension does depend on E and
R, it only does so weakly: Relative to its value, D(KE ) + 1

2 is very roughly constant across
the range of R and E computed here.

6.3. Discussion

Table II contains a comparison of D(KE ) + 1
2 (for E = 0.5) as a function of R, versus

the scaling exponents from Fig. 21. Figure 23 is a graphical representation of similar
information. This figure shows that even though the scaling curve in Fig. 21 is noisy, its trend
nevertheless agrees with the conjecture. Furthermore, the relative size of the fluctuations is
small. At the present time, the source of the fluctuation is not known, but it is possible that
the range of h- explored here is simply too large to exhibit the asymptotic behavior clearly.
They may also reflect irregularities in the smoothness of the function 1/T near the trapped
set; see Footnote 2.

Figures 24–30 contain plots of log(Nres) versus −log(h-), for various values of R. Along
with the numerical data, the least-squares linear fit and the scaling law predicted by the

TABLE II

Slopes Extracted from Fig. 19

R Slope D(K0.5) + 1

2
Relative error

1.4 1.2475 1.2885 0.032888
1.45 1.3433 1.2834 0.044645
1.5 1.2822 1.2829 0.00052244
1.55 1.327 1.2773 0.037472
1.6 1.3055 1.2725 0.025256
1.65 1.2304 1.2694 0.031756
1.7 1.2431 1.2636 0.016509

Note. Relative errors are also shown.
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FIG. 23. Dashed lines with circles represent D(K E ) + 1
2

as functions of R, for E ∈ {0.4, 0.5, 0.6}. The dotted
curve with triangles is the scaling exponent curve from Fig. 21, while the solid curve with stars is the linear
regression curve from that figure. Relative to the value of the dimension, the fluctuations are actually fairly small.
See Table II for a quantitative comparison.

conjecture are also plotted.8 In contrast with Fig. 23, these show clear agreement be-
tween the asymptotic distribution of resonances and the scaling exponent predicted by the
conjecture.

6.4. Double Gaussian Scattering

Finally, let us examine resonances for the double gaussian model (setting m = 2 in (7).
This case is interesting for two reasons: First, there exist rigorous results [14, 22] against
which we can check the correctness of our results. Second, it helps determine the validity
of semiclassical arguments for the values of h- used in computing resonances for the triple
gaussian model.

The resonances are shown in Figs. 31–37: In these plots, R = 1.4 and h- ranges from 0.035
to 0.015. One can observe apparent pseudospectral effects in the first few figures [31, 37];
this is most likely because the scaling angle α used here is twice as large as suggested in
Section 4.1, to exhibit the structure of resonances farther away from the real axis.

To compare this information with known results [14, 22], we need some definitions: For
a given energy 0 < E < 1, define C(E) by

C(E) = 2
∫ x1(E)

x0(E)

(2 · (E − V (x)))1/2 dx, (52)

8 The conjecture only supplies the exponents for power laws, not the constant factors. In the context of these
logarithmic plots, this means the conjecture gives us only the slopes, not the vertical shifts. It was thus necessary
to compute an y-intercept for each “prediction” curve (for the scaling law predicted by the conjecture) using least
squares.
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FIG. 24. This plot shows log(Nres) as a function of −log(h̄), for R = 1.4. Triangles represent resonance
counting data, circles represent a least squares fit of the resonance data, and stars represent the exponents predicted
by the conjecture. In this plot, h̄ varies geometrically from 0.025 down to 0.017.

FIG. 25. The same plot, but for R = 1.45.

FIG. 26. The same plot, but for R = 1.5.
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FIG. 27. The same plot, but for R = 1.55.

FIG. 28. The same plot, but for R = 1.6.

FIG. 29. The same plot, but for R = 1.65.
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FIG. 30. The same plot, but for R = 1.7.

FIG. 31. Resonances for two-bump scattering with h̄ = 0.035. As before, filled circles mark resonances, while
stars, empty circles, and dots mark other eigenvalues of Ĥ α . Note apparent pseudospectral effects (see Section 4.1).

FIG. 32. Resonances for two-bump scattering with h̄ = 0.030391.
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FIG. 33. Resonances for two-bump scattering with h̄ = 0.026388.

FIG. 34. Resonances for two-bump scattering with h̄ = 0.022913.

FIG. 35. Resonances for two-bump scattering with h̄ = 0.019895.
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FIG. 36. Resonances for two-bump scattering with h̄ = 0.017275.

where the limits of integration are

x0(E) = −R + (−2σ 2 log(E))1/2,
(53)

x1(E) = R − (−2σ 2 log(E))1/2.

Let θ(E) denote the larger (in absolute value) eigenvalue of D�̃(0, 0); log(θ) is the
Lyapunov exponent of �̃, and is easy to compute numerically in this case. Note that for
two-bump scattering, each energy E determines a unique periodic trapped trajectory, and
C(E) is the classical action computed along that trajectory.

FIG. 37. Resonances for two-bump scattering with h̄ = 0.015.
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FIG. 38. Lattice points for h̄ = 0.035.

Since these expressions are analytic, they have continuations to a neighborhood of
the real line: The limits x0(λ) and x1(λ) are calculated using the natural branch of the
square root, so that (a + ib)1/2 = a1/2 + iba−1/2 + O(b2). The function C(λ) is then com-
puted along the straight line connecting x0 to x1 (though Cauchy’s theorem tells us that
any nearby contour will do). In [14], it was shown that any resonance λ = E − iγ must
satisfy

C(λ) = 2πh-
(

m + 1

2

)
− ih-

(
n + 1

2

)
log(θ(Re(λ))) + O(h-2), (54)

where m and n are nonnegative integers. (The 1
2 in m + 1

2 comes from the Maslov in-
dex associated with the classical turning points.) This suggests that we define the map

FIG. 39. Lattice points for h̄ = 0.030391.
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FIG. 40. Lattice points for h̄ = 0.026388.

F(λ) = (F1(λ), F2(λ)), where

F1(λ) = Re(C(λ))

2πh-
− 1

2
(55)

and

F2(λ) = Im(C(λ))

h- log(θ(Re(λ)))
+ 1

2
. (56)

F should map resonances to points on the square integer lattice, and this is indeed the case:
Figures 38–44 contain images of resonances under F , with circles marking the nearest
lattice points. The agreement is quite good, in view of the elimination of O(h-2) terms from
Eq. (54).

FIG. 41. Lattice points for h̄ = 0.022913.
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FIG. 42. Lattice points for h̄ = 0.019895.

FIG. 43. Lattice points for h̄ = 0.017275.

FIG. 44. Lattice points for h̄ = 0.015.
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7. CONCLUSIONS

Using standard numerical techniques, one can compute a sufficiently large number of
resonances for the triple gaussian system to verify their asymptotic distribution in the
semiclassical limit h- → 0. This, combined with estimates of the fractal dimension of the
classical trapped set, gives strong evidence that the number of resonances Nres in a box
[E0, E1] − i[0, h- ], for sufficiently small |E1 − E0| and h- , satisfies

Nres ∼ h-− D(K E )+1
2 , (57)

as one can see in Fig. 23 and Table II. Furthermore, the same techniques, when applied to
double gaussian scattering, produce results which agree with rigorous semiclassical results.
This supports the correctness of our algorithms and the validity of semiclassical arguments
for the range of h- explored in the triple gaussian model. The computation also hints at more
detailed structures in the distribution of resonances: In Figs. 14–18, one can clearly see
gaps and strips in the distribution of resonances. A complete understanding of this structure
requires further investigation.

While we do not have rigorous error bounds for the dimension estimates, the numerical
results are convincing. It seems, then, that the primary cause for our failure to observe the
conjecture in a “clean” way is partly due to the size of h- : If one could study resonances at
much smaller values of h- , the asymptotics may become more clear.
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